

DEPARTMENT OF TRANSPORT

UMNYANGO WEZOKUTHUTHA

CONSULTING ENGINEERING SERVICES FOR THE UPGRAGE OF P449 KM 0 TO 11.3

STRUCTURES REPORT

June 2017

Prepared for:

KwaZulu-Natal Department of Transport Private Bag X9043 PIETERMARITZBURG 3200 Prepared by:

P O Box 1066 PIETERMARITZBURG 3200

TABLE OF CONTENTS

1.	INTR	ODUCTION	L
	1.1	BACKGROUND	L
	1.2	LOCALITY	L
	1.3	SCOPE OF THIS REPORT	Ĺ
2.	SITE	AND MISCELLANEOUS DICTATES	2
	2.1	EXISTING CULVERTS	<u>)</u>
	2.2	Hydrology	
	2.3	Hydraulics	
	2.4	FOUNDATION INVESTIGATIONS	1
	2.5	TOPOGRAPHICAL SURVEY	
	2.6	ENVIRONMENTAL AUTHORIZATION	1
3.		ES AND STANDARDS	
4.	COST	ESTIMATE10)
	4.1	BASIS OF COST ESTIMATE	
	4.2	ESTIMATE)
5.	SUM	MARY AND RECOMMENDATION12	L

APPENDICES

APPENDIX A: Locality Plan

APPENDIX B: Proposed General arrangements

1. Introduction

1.1 Background

Royal HaskoningDHV was appointed by the Province of KwaZulu-Natal: Department of Transport (hereafter referred to as KZN: DOT) to conduct engineering services for the Detailed Design and the Construction Monitoring for the rehabilitation of Main Road 449 km 0 to km 11.3.

After further investigation it was decided that the road required more extensive repair due to poor drainage and alignment conditions therefore an upgrade is to be undertaken.

The upgrade of Main Road 449 comprises the bulk earthworks, layerworks, surfacing, drainage, ancillary works and major structures required for the upgrading of Main Road 449. The required roadworks starts at km 0,0 (the intersection of Main Road 522-1) and ends at Km 11,3 (the intersection of Main Road 444).

1.2 Locality

Main Road P449 is situated within the uMkhanyakude district of the Jozini Local Municipality. It starts from its intersection with P522-1 in Jozini and ends at its junction with Main Road P444. The total length of the road is approximately 11.3 Km of which only the first 6.0 km will form part of this report. The road is classified as a class 3 road and forms part of the access route from Jozini to the community of Mbazwane. The project Locality Plan is provided in Appendix A of this report.

There are six major culvert river crossings and two river bridges on this project as listed in the table below:

Structure No.	Chainage (km)	Existing Structure	Proposed Structure	Description of Works
STC 3962	1.990	1 / 750mm diameter Concrete Pipe	3 / 1,2m x 1,8m Box Culvert	Replace existing undersized culvert.
STC 3958	3.877	3.877 2 / 900mm diameter 6 / 1,8m x 1,8m Box Concrete Pipe Culvert		Replace existing undersized culvert.
STC 3959	4.445	1 / 750mm diameter Concrete Pipe	6 / 1,8m x 1,8m Box Culvert	Replace existing undersized culvert.
	6.75	Rive	r Bridge	These structures
N/A	6.956 Mayor Culvert			
N/A	7.169	Mayo	as this portion of the	
	7.500	Mayo	works is still being	
	8.666	Rive	r Bridge	designed.

 Table 1.1 Mayor Culverts KM 0 to KM 11.3

1.3 Scope of this Report

The scope of this report is to review the mayor culverts between km 0 and 6 and to recommend for widening, lengthening, improvements, replacement of these existing mayor culverts.

2. Site and Miscellaneous Dictates

2.1 Existing Culverts

The existing mayor culvert river crossings that form part of this report along P449 between km 0 and km 6.0 are summarized in table 2.1 below:

Chainage (km)	Existing Culvert Size	Photo
1.990	3 Number 750mm diameter concrete pipes.	
3.877	2 Number 900mm diameter concrete pipes.	
4.445	1 Number 750mm diameter concrete pipes.	No picture available.

Table 2.1 Existing Culverts KM 0 to KM 11.3

These existing culvert crossing were inspected by RHDHV staff and although they were structurally still in a reasonable condition, there were signs of overtopping, debris and erosion found on site.

Figure 2.1: Existing Culvert at km 1.990 – Debris due to overtopping.

2.2 Hydrology

Hydrology analyses for the existing culvert crossings were carried out using SANRAL's Drainage Manual 6th Edition. The headwater to depth ratios for inlet control and outlet control, including the free board requirements where analysed to check the hydraulic capacities of the structures.

The flood estimates were calculated using the following methods:

- Rational,
- Alternative Rational,
- Standard Design Flood (SDF),
- Unit Graph and
- Empirical.

The estimated flood peaks were based on the Rational Method as the catchment areas for the culverts were all less than 15 km². The Standard Design Flood (SDF) method and other relevant methods were also used in the evaluation for comparison.

The principal catchment parameters for the culverts are shown in Table 2.2 below.

CULVERT NUMBER	CATCHMENT AREA (km²)	LONGEST COLLECT OR (km)	10/85 HEIGHT DIFFERENCE (m)	SDF BASIN No.	TIME OF CONC. (hrs.)
STC 3962 at km 1.975	0.69	0.91	30	27	0.21
STC 3958 at km 3.862	9.55	9.13	250	27	1.30
STC 6959 at km 4.430	9.69	6.55	90	27	1.32

The following are the peak flows for the return period calculated using Utility Programs for drainage.

Table 2.3 – Summary of Peak Floods

CULVERT NUMBER	CALCULATION METHOD	RETURN PERIOD: 10YRS (Q10)	RETURN PERIOD: 20YRS (Q20)	RETURN PERIOD: 50YRS (Q50)	RETURN PERIOD: 100YRS (Q100)	RETURN PERIOD: 200YRS (Q200)
	Rational	9	11	16	20	
CTC 2002	Alt. Rational	12	16	21	26	29
STC 3962 at km 1.975	SDF	17	24	35	43	52
	Unit Graph	11	15	23	32	
	Empirical	13	14	20	25	
	Rational	49	63	86	111	
	Alt. Rational	50	65	86	104	118
STC 3958 at km 3.862	SDF	78	110	156	194	234
	Unit Graph	52	72	107	148	
	Empirical	40	46	64	81	

CULVERT NUMBER	CALCULATION METHOD	RETURN PERIOD: 10YRS (Q10)	RETURN PERIOD: 20YRS (Q20)	RETURN PERIOD: 50YRS (Q50)	RETURN PERIOD: 100YRS (Q100)	RETURN PERIOD: 200YRS (Q200)
STC 6959 at km 4.430	Rational	49	64	87	112	
	Alt. Rational	50	66	87	105	119
	SDF	79	111	157	196	236
STC 6959 at km 4.430	Unit Graph	61	84	126	172	
	Empirical	43	50	69	87	

The P449 is classified as a Class 3 road for drainage purposes. Figure 8.2 of the SANRAL Drainage Manual was used to determine the design flood frequency based on a \mathbf{Q}_{20} peak flow rate. The rational method is considered more appropriate for these sites due to the fact that the catchment areas are considerably less than 15km². The Rational method flood peak estimates are summarized in **Table 2.4** below.

		DESIGN FI	LOOD QT	DESIGN FLOOD Q2T		
CULVERT NAME	Q ₂₀ (m³/s)	RETURN PERIOD (Years)	D FLOW PERIOD		PEAK FLOW (m³/s)	
STC 3962 at km 1.975	11	10	9	20	11	
STC 3958 at km 3.862	63	13	49	26	63	
STC 6959 at km 4.430	64	13	49	26	64	

The Rational method estimated flood peak values from **Table 2.4** above (Class 3, Rational Method) were used in the hydraulic assessment for the existing culverts. The Rational Method is deemed accurate and appropriate for catchment areas up to 15 km².

2.3 Hydraulics

The hydraulic capacity of the existing structures was checked against the Class 3 road requirement in accordance with SANRAL's Drainage Manual.

The existing culverts were so grossly undersized that the results of the hydraulic analysis are not worth recording. It is thus recommended that all three of the culverts be replaced with sizes complying with the relevant hydraulic requirements.

The new replacement culverts were sized on the basis of the dimensionless inlet control performance curves given in the Design Manual for Standard Box Culverts Figure 5.13. All the proposed structures will conform with the freeboard (freeboard FD for Q_T and Shoulder breaking point freeboard F_{SBP} for Q_{2T}) requirements in terms of Chapter 8.3 of the SANRAL Drainage Manual. The requirements are:

- The submergence limit, H/D = 1.2, of the design flood, Q_T ,
- \circ FD> or = 0.3 m if debris is present where FD =(D-Hw)
- The maximum allowable submergence level for the design flood Q_{2T} = smallest of 2D or Shoulder Break Point height
 - $\circ \quad F_{\text{SPB}} \text{-} \text{ or } = 0 \text{ m where } F_{\text{SPB}} \text{ =} (\text{D } \text{+} H_{\text{Fill}} \text{-} \text{Hw})$

The hydraulic assessments of the culverts are shown in Table 2.5 below.

Table 2.5: Proposed Replacement Culverts

CULVERT NUMBER	PROPOSED REPLACEMENT CULVERT	Hw/D FOR Q _T <= 1,2	Hw/D FOR Q _{2T} <= 2,0	FD Calc. (> or = 0.3) (m)	H _{fill} (m)	F _{SBP} Calc. (> or =0) (m)
STC 3962 at km 1.975	3 / 1,2m x 1,8m Box Culvert	0.83 OK	1.01 OK	0.200	0.593	0.793 OK
STC 3958 at km 3.862	6\3 / 1,8m x 1,8m Box Culvert	1.15 OK	1.42 OK	-0.262	0.944	0.181 OK
STC 6959 at km 4.430	6\3 / 1,8m x 1,8m Box Culvert	1.15 OK	1.43 OK	-0.272	1.075	0.294 OK

2.4 Foundation Investigations

The foundation investigations consisted of trail pits at the inlet and outlet sides of each culvert crossing which was inspected and interpreted by our Geotechnical Engineer (Robby Dunbar).

The founding material and foundation improvement recommendations for the three culverts were similar. The founding material is a clayey, sandy gravel for about 2.0 meters. The foundation recommendation is to excavate 1.0 meters of the clayey, sandy gravel and replace it with an engineered rock fill.

2.5 Topographical Survey

A culvert site survey has not been done at the sites. The culverts have been positioned using the road strip survey.

2.6 Environmental Authorization

The Environmental Impact assessment for the entire project is still to be undertaken and can only be initiated once the detailed design is approved by KZN DOT.

The Contractor will be responsible for the overall implementation of the Environmental Management Plan in accordance with the requirements of Department of Environmental Affairs and Tourism (DEAT) or relevant legislation. He will also be responsible for all third party work on the project.

The particular negative environmental impacts which construction works are likely to cause, together with their mitigating reduction factors, are summarised below:

- Normal River Flow: Protection during normal river flows will be done by means of temporary earth berms to keep the normal flow out of the trench excavations. Seepage into trench excavation will be addressed by dewatering using pumps. It is recommended that construction of the river structures be undertaken during dry seasons. The berms will be removed after construction.
- **Storm Events**: Appropriate storm water soil erosion control is important during construction. Storm events do provide a major hazard to the construction work in river beds. All labour equipment and materials will be removed from river. To facilitate drainage during storm events, excavation of trenches will proceed in an upstream direction to allow for the trenches to drain after a storm to protect construction works against storm flow.
- **Water pollution**: The contractor must employ adequate mitigation to insure there will be no deleterious substances entering the canals during construction which could affect the quality of water.

- **Material Handling**: The stockpiles will be placed outside the 1:50 year flood lines in such a way that it will not impact on the river courses. Concrete kept on site will be limited because the contractor will make use of local supplier for ready mix concrete.
- Traffic accommodation: Although every effort will be made to minimise traffic disruptions it can be expected that during the construction of the structures there will be significant disruptions for extended periods -therefore the contractor must employ traffic plan that will calm the traffic.

3. Codes and Standards

The new culvert's designs and construction where applicable will comply with:

- The formal agreement between KZN DOT and RHDHV for this project.
- SANRAL's Code of Procedures for the Planning and Design of Highway and Road Structures in South Africa (February 2002).
- KZN DOT current Standard Details.
- SANRAL Drainage Manual 6th Edition.
- Relevant directives issued by KZN DOT's Bridge Engineer.
- TMH7 Parts 1, 2 and 3 (as amended 1988). Traffic Loading : NA and NB36.
- Design Manual for Standard Box Culverts

4. Cost Estimate

4.1 Basis of Cost Estimate

Quantities extracted from the drawings for the main structural elements form the basis for the cost estimates. The rates used in arriving at the estimates are based on rates for other recent contracts and prices obtained from manufacturers and suppliers.

4.2 Estimate

The cost estimates summarised in the tables below, but exclusive of:

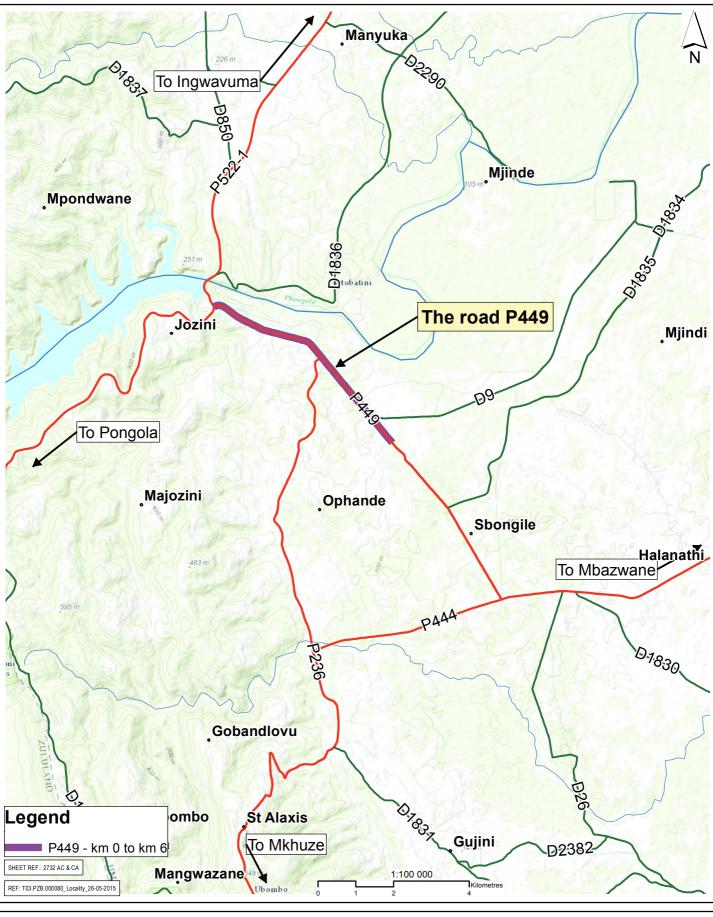
- Preliminary & General Cost (P & G)
- Accommodation of Traffic Cost
- Contingencies Cost
- Contract Price Adjustment (CPA)

Table 4.1: Estimated Costs for Culverts Improvements.

CULVERT	ESTIMATED COST
STC 3962 at km 1.975	R 700 000
STC 3958 at km 3.862	R 1 400 000
STC 6959 at km 4.430	R 1 700 000
Total (excl VAT)	R 3 800 000

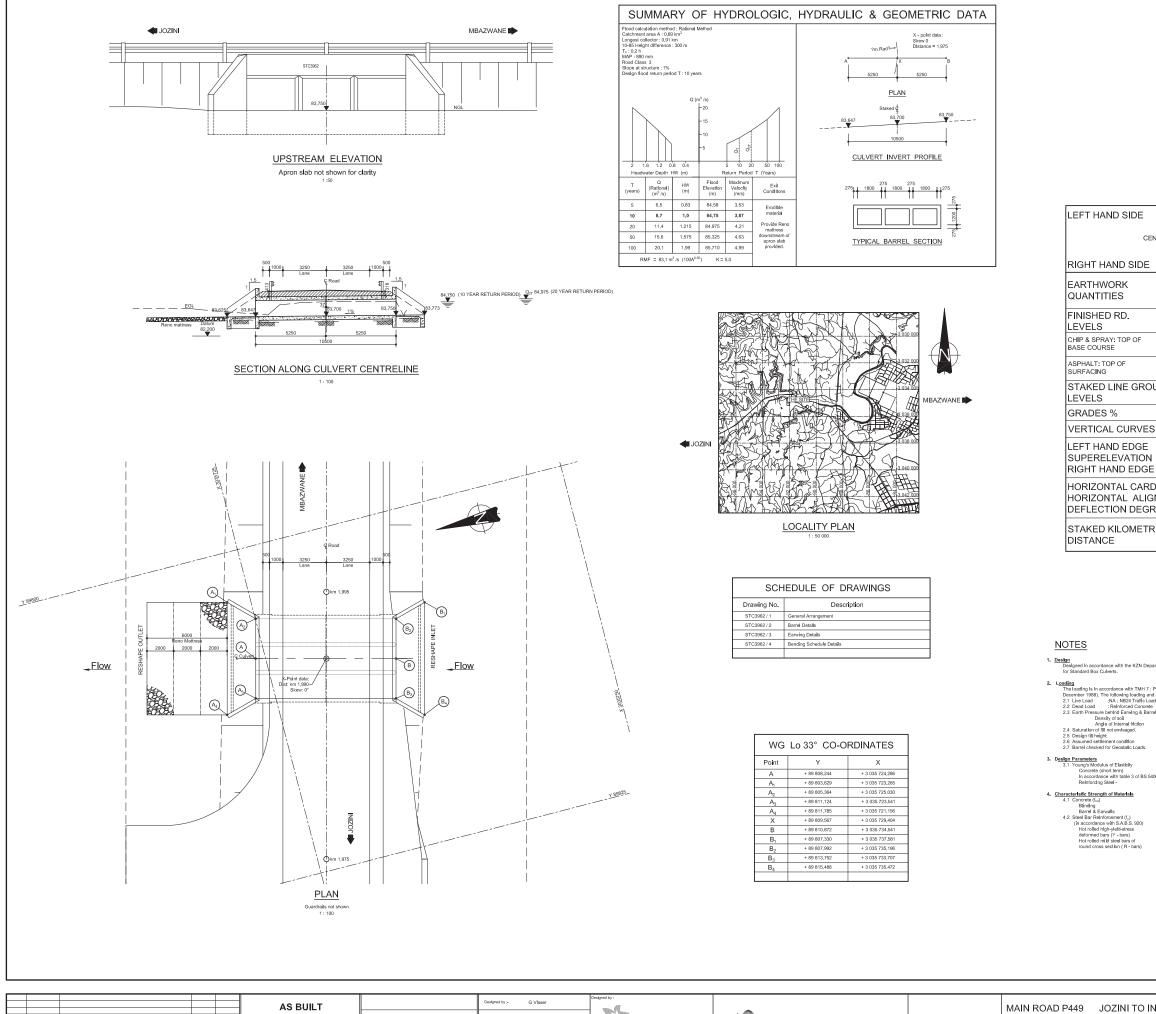
5. Summary and Recommendation

- 5.1 KZN DOT plan to upgrade the P449 from km 0 to 6.0 and have appointed RHDHV to design and document the proposed culvert replacements.
- 5.2 It is recommended that:
- The existing 750mm diameter pipe culvert at km 1.975 be replaced with a 3 x 1.2m x 1.8m box culvert.
- The existing 2 x 900mm diameter pipe culvert at km 3.862 be replaced with a 6 x 1.8m x 1.8m box culvert.
- The existing 750mm diameter pipe culvert at km 4.430 be replaced with a 6 x 1.8m x 1.8m box culvert.
- 5.3 It is recommended that KZN DOT accept these proposals in principle, subject to which the design will be developed to final design approval prior to construction.


19/06/2017

Date

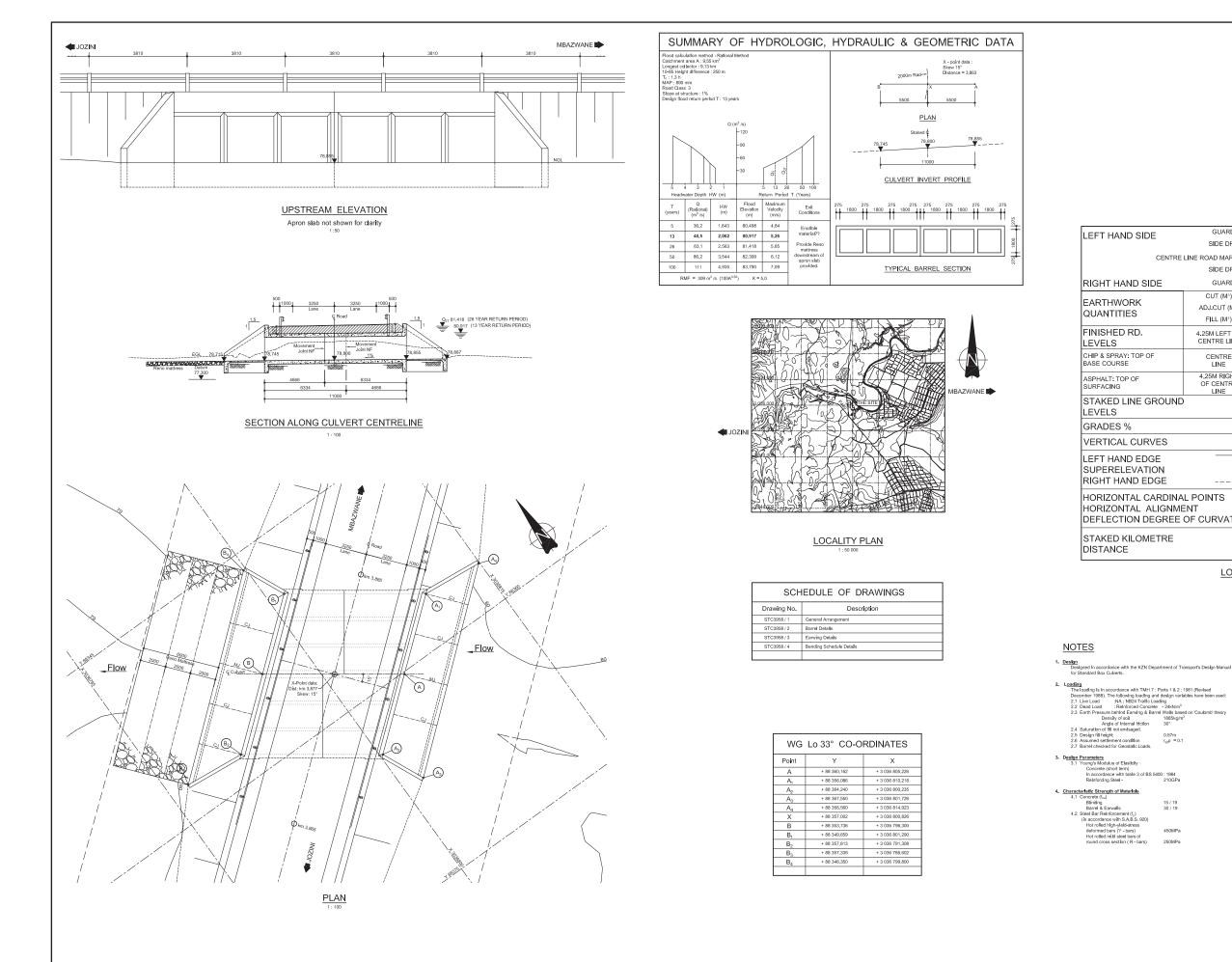
Report prepared by: Mr GA Visser Pr Eng Principal for Royal HaskoningDHV


Appendix A: Locality Plan

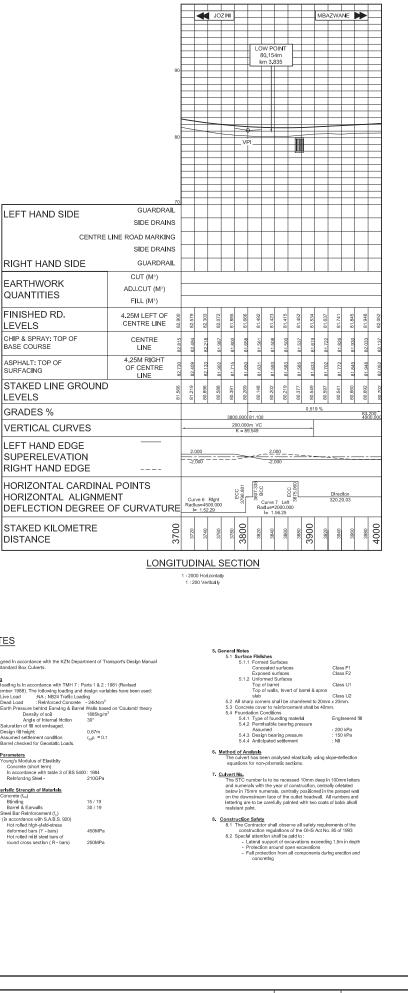
Locality Plan

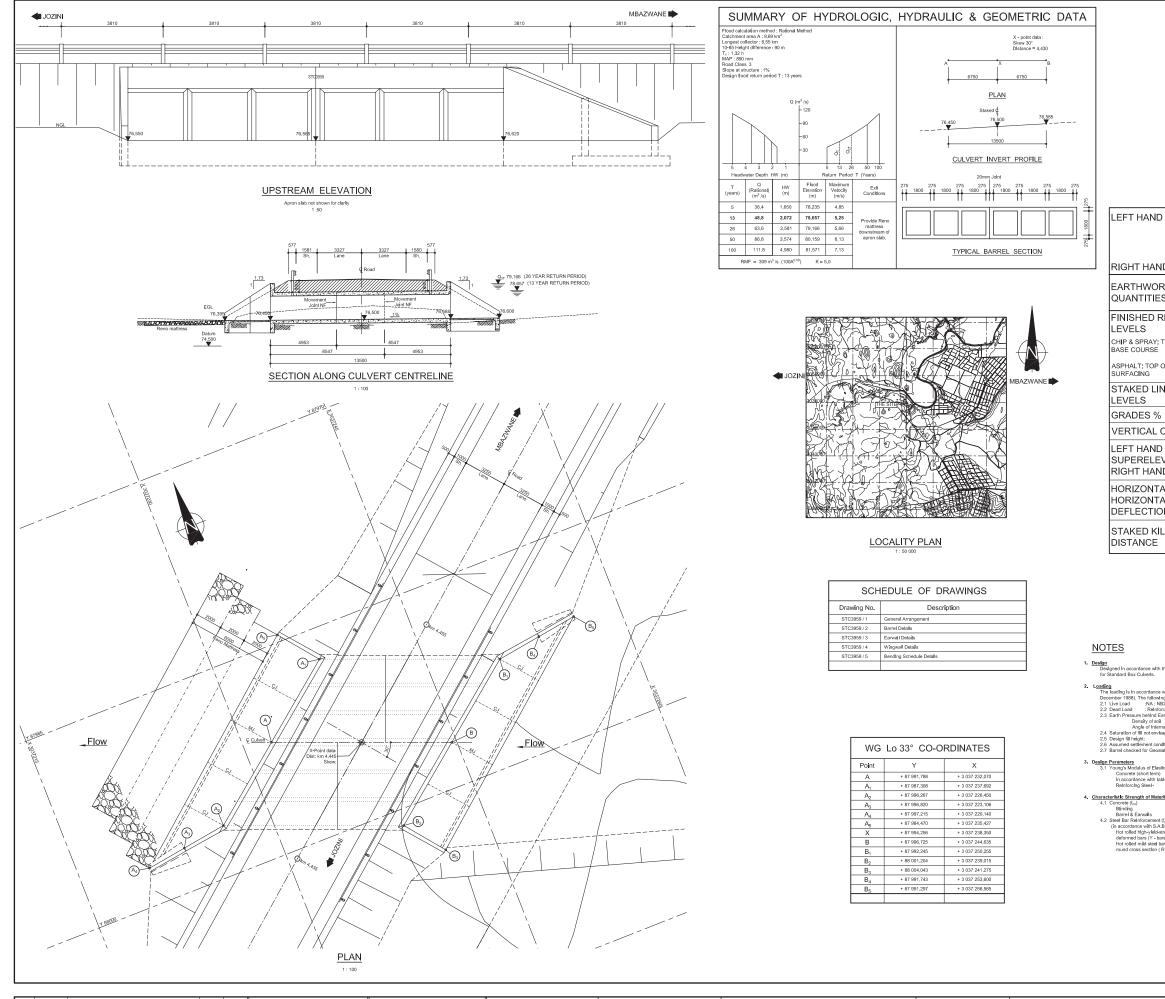
Main Road 449 Locality Plan Appendix B: Proposed General Arrangements

17/05/1


Date

Issued for construct


Description / Beskrywing


		AS BUILT	Designed by :- G Visser	Designed by :			MAIN ROAD P449 JOZINI TO INTERSECTION WITH P444	Staked km distance 1,990	Sheet:- 1
			Checked by - W Harrison	Devel				\$27 25 52.05 E32 05 30.1	of:- 4
+		Supervising Engineer Date	Drawn by - Z Pylman		PROVINCE OF KWAZULU-NATAL	Bridge Engineer		Scale	Plan No. :-
0	A.V.		Checked by - G Visser	Enhancing Society Together	DEPARTMENT OF TRANSPORT		3 / 1,2 x 1,8 BOX CULVERT	As shown	STC3962/1
		Supervising Authority	File Reference - MRP449 / 6 / 1			Head : Transport	GENERAL ARRANGEMENT		Rev A

<form></form>			ACCESS
<form></form>			km 1.960 MBAZWANE
ADJ.CUT (M') FLL (M) 4.25M LEFT OF 8	TO E GUARDRAIL SIDE DRAINS CENTRE LINE ROAD MARKING SIDE DRAINS DE GUARDRAIL	RHS	RHS
VES 190.00m vC 98.9 ///2 190.00m vC 98.9 //2 GE	ADJ.CUT (M') FILL (M') 4.25M LEFT OF CENTRE LINE F CENTRE LINE 4.25M RIGHT OF CENTRE LINE ENCUND	33 33<	¹⁶ B.4.47 B6.000 B6.065 B4.591 B4.965 B6.060 B6.065 B4.618 B4.966 B6.067 B6.067 B4.618 B6.002 B6.067 B6.067 B4.618 B6.002 B6.067 B6.067 B4.618 B6.002 B6.067 B6.067 B4.618 B6.012 B6.047 B6.544 B4.618 B6.012 B6.544 B6.724 B4.619 B6.173 B6.544 B6.724 B4.74 B6.173 B6.542 B6.544 B6.104 B6.173 B6.542 B6.544 B6.131 B6.427 B6.542 B6.542
C C	GE OR OGE ARDINAL POINTS LIGNMENT EGREE OF CURVATURE	150.00m VC 580 UK 572.491 580 UK 572.490	150.00m VC SQ
0.41m Assumed ::00 kPa f _{eb} = 0.1 ::5.4.3 Design bearing pressure ::50 kPa ads. 5.4.4 Anticipated selement ::50 kPa ads. :5.4.4 Anticipated selement ::50 kPa 15.5 4 Anticipated selement ::50 kPa 16 S 5400 ::1084 :10 kPa 210GPa The culvert has been analysed elastically using slope-deflection equations for non-prismitic sections. 15 / 19 The STC number is to be recessed 10mm deep in 100mm letters and numerals with the year of construction, centrally oferated effective in the state of the outlet headwall. All numbers and on the downstream face of the outlet headwall. All numbers and on the downstream face of the outlet headwall. All numbers and resistant paint. 200 Construction Safety 450MPa 8.1 The Contract relial boserve all safety requirements of the construction regulations of the OFS Act No.8 (15 midept) 30 / 250MPa :: 200 - 100 construction regulations of the OFS Act No.8 (15 midept) 31 / 10 contraction regulations of the OFS Act No.8 (15 midept) 32 / 250MPa :: 200 - 100 construction regulations of the OFS Act No.8 (15 midept) 33 / 250MPa :: 200 - 100 construction regulations of the OFS Act No.8 (15 midept) 33 / 250MPa :: 200 construction regulations of the OFS Act No.8 (25 midept) 33 / 250MPa :: 200 construction regulations of the OFS Act No.8 (25 midept) 34 / 250 construction regulations of the OFS Act No.8	N Department of Transport's Design Manual MH 7 : Parts 1 & 2 : 1981 (Revised Ing and design variables have been used: infc.Loading Mick Loading 3 & Barrel Walls based on "Coulomb' theory 1885kright"	1 : 2000 Horizontally 1 : 200 Ventically 5. General Notes 5. I Surface Flotbla 5. I Jourface Flotbla 5. I Conneal Exposed 5. 2. All salab 5. 2. All salab 5. 3. Conneals connel 5. 4. Foundation Connel 5. 5. Foundation Connel 5. 5. Connel 5. Connel 5. 5. Connel 5. Connel 5. 5. Foundation Connel 5. 5. Foun	Surfaces Gaussian Class F1 surfaces Gaussian Class F2 disurfaces Gaussian G
	r _{rgb} = 0.1 (ES 5400: 1984 210GPa 15 / 19 30 / 19 20) 450MPa	Assume 5.4.3 Design 1 5.4.4 Anticlas 5.4.4 Anticlas The culter has been equations for non-pit The STC number is and numerals with th on the downstream for and numerals with th on the downstream for lettering are to be car resistant paint. 8. Construction Safety 8.1 The Contractors constructions 2. Speciatural sup 2. Speciatural sup - Protections - Protections	d : 200 kPa adving pressure : 500 kPa ted settlement : Nil analysed elastically using slope-deflection ismatic sections. a be recessed 00mm deep in 100mm letters eyer of construction, centrally orietated a be recessed 00mm deep in 100mm letters eyer of construction, centrally orietated a be recessed 00mm deep in 100mm letters eyer of construction, centrally orietated a be recessed 00mm deep in 100mm letters eyer of construction, centrally orietated a be recessed 00mm deep in 100mm letters eyer of construction, centrally orietated a be recessed 00mm letters eyer of constructions of back akail what observe all safety requirements of the gualations of the OFS Act No. 85 of 1993 point of second/ones exceeding 1,5mm deepth around open excavations to from all components during section and

			AS BUILT	Designed by - Checked by -	G Visser B P Durow	Designed by:		Bridge Engineer	MAIN ROAD P449 JOZINI TO INTERSECTION WITH P444	Staked km distance 3,877 S27 26 27.1 E32 06 22.7	Sheet:- 1 of:- 4
			Supervising Engineer Date	Drawn by :-	Z Pylman	HaskoningDHV	PROVINCE OF KWAZULU-NATAL	ninge millieer	6 / 1,8 x 1,8 BOX CULVERT	Scale	Plan No. :-
A Rev	2017/05/17 Date	Issued for construction G.A.V. Description / Bestrywing Checked Signed		Checked by >-	G Visser	Enhancing Society Together	DEPARTMENT OF TRANSPORT			As shown	STC3958/1
AMENDMENTS			Supervising Authority	File Reference -	MRP449/6/1	Signed Date	-	Head : Transport	GENERAL ARRANGEMENT		Rev A

			AS BUILT	Designed by -	G Visser W Harrison	Pesigned by:		Bridge Engineer	MAIN ROAD P449 JOZINI TO INTERSECTION WITH P444	Staked km distance 4,445 S27 26 41.6 E32 06 35.9	Sheet: 1 of:- 5
			Supervising Engineer Date	Drawn by :-	Z Pylman	HaskoningDHV	PROVINCE OF KWAZULU-NATAL	nudio militare	6 / 1,8 x 1,8 BOX CULVERT	Scale	Plan No. :-
A 2017/05/17 Rev Date	Issued for construction Description / Beskrywing	G.A.V. Checked Signed		Checked by >	G Visser	Enhancing Society Together 18/05/2017	DEPARTMENT OF TRANSPORT			As shown	STC3959/1
	AMENDMENTS		Supervising Authority	File Reference >	MRP449/6/1	Signed Date		Head : Transport	GENERAL ARRANGEMENT		Rev A

				↓	DZINI	1		_		-	_						
					_			_	_	_		_		иваz			
		90				Ē	LH		╕	LOW	PO	NT					
					km 4	1.420	1	77.	418n 4.45	n							
						1	_	NE 79	W LF 250r	n	_	-		+			
					_				_	km	4.43	5	_	_			
		80							_				_				
					-	7				ille				-		-	-
			- N	.G.L	_{					Ще И/РІ	_		_			-	
																-	
		70															
SIDE	GUARDRA SIDE DRAIN					\rightarrow	/		_	\searrow	· <u> </u>	_,_,					
CENTR					-		-	_	-				-	+	-	+	-
	SIDE DRAIN	٩S															
D SIDE	GUARDRA	١L					~			\wedge	~			-*	• • •		
RK	CUT (M ³) ADJ.CUT (M ³)																-
S	FILL (M ³)					_			_	_			_			_	
RD.	4.25M LEFT OF CENTRE LINE	4.250	4.250 80.213	4.250 79.817	4.250 79.420	14 250 79 023	4 250	4.250 78.359	4 250	4 250	4.250 77,993	4.250 78.040	4.250	4.250 78.364	4.250 78.559	4.250 78.754	4.250 78.949
TOP OF	CENTRE	80.695	80.298	79.902	79.505	79.108	78.735	78.444	78.237	78.115	78.078	78.125	78.257	78.449	78.644	78.839	79.034
OF	4.25M RIGHT OF CENTRE LINE	4.250 80.610	4.250 80.213	4.250 79.817	4.250 79.420	4.250 79.023	4.250 78.650	4.250	4.250 78.152	4.250 78.030	4.250 77.993	4.250 78.040	4.250 78.172	4.250 78.364	4.250	4.250 78.754	4.250 78.949
NE GROUN		80.068	79.563	79.069	78.626	78.232	77.919	77.608	77.443	77.444	77.669	77.812	77.870	78.025	78.141	78.280	78.448
			-1	.98 <u>4 </u>	6		'		14	000 7 0.000n	n VC						
							•		ĸ	= 47.3	306						_
) EDGE VATION ID EDGE																	
	AL POINTS																
AL ALIGNN		RE															
LOMETRE		4300	4320	4340	4360	4380	4400	4420	4440	4460	4480	1500	4520	4540	4560	4580	4600
									7					1			
	LONG		1:200		zontall												
					5. G	ieneral	Notes		lak-								
the KZN Department of	of Transport's Design Manual					5.1	5.1.	Con	ned Si cealec	urfaces I surfac	ces			Clas			
with TMH 7 : Parts 1 8	2 : 1981 (Revised						5.1.2	2 Unfo Top	ormed of bar	urface Surfac rel	es			Clas Clas			
B24 Traffic Loading rced Concrete - 24kN	varlables have been used: /m ³					5.2	All sha	slab arp cor	ners s	hall be	charr	oarrel 8 nfered I		Clas n x 20r			
1885k nal friction 30°	based on 'Coulomb' theory :g/m ³					5.4	Found	ation (Conditi	ons unding e bear			De 40h		neered	AU	
aged. 0.88m dition r _{ed} p =	1 ≡0.1						5.4.3	Ass Des	umed ign be	e bear aring p d settle	ressur			: 200 : 150 : NII) kPa) kPa		
tatic Loads.					6. <u>N</u>	<u>flethod</u> The						tically	ueloa e		dector		
licity ble 3 of BS 5400 : 1984				equ	ations	tor no	n-prisi	natic s	ection	s.							
210G	 Culvert No. The STC number is to be recessed 10mm deep in 100mm letters and numerals with the year of construction, centrally orletated below in 75mm numerals, centrally positioned in the parapet wall 																
15 / 1 30 / 1				on th lette	e dow	instrea e to be	ım fac	e of the	e outle	et head	wall. A	All numi s of balo	pers an	d			
(f _y) B.S. 920) tress			8.	Constr	uctio	n Safe	by tor sha	all obs	erve a	II safet	v reaul	rement	s of the				
rrs) 450M ars of R - bars) 250M	8.1 The Contractor shall observe all safety requirements of the construction regulations of the OHS Act No. 85 of 1993 8.2 Special attention shall be paid to: Lateral support of excavations exceeding 1,5m in depth																
							- F	Protect all pro	ion an	ound o n from	pen e:	cavati	ons	ing ere			
									5								